
Twitter | Mastodon

12 Days of Ghidra
Nathan R

https://twitter.com/nathanstpr_
https://infosec.exchange/@nathanstpr


Day 4 - Debuggers



Static and Dynamic Analysis

Static Analysis

● Look at code without running it

Dynamic Analysis
● Run the binary and observe its behaviour

So far, we have focus on static analysis, Ghidra can also help us perform 
dynamic analysis



Debuggers

Allow us to step through program execution line by line

● View variable values
● Register Values
● Contents in memory

Why might we need to do this?
● Information that is only generated at runtime



Ghidra Debugger Tool

Connects to a system debugger

● GDB -> Linux
● LLDB -> MacOS
● WinDBG -> Windows

Set breakpoints
● Where you want to stop execution

View variable and memory contents in the GUI

Send input to the program



Settingup Ghidra Debugger

Open the program manager and click on blue bug

Open a terminal window – here for why
• Run “tty” and take note of value e.g. /dev/pts/0
• “sleep 1000000”

Inside Ghidra create a new GDB Target
• “IN-VM GNU gdb local debugger”

In Ghidra GDB Interpreter:
• “set inferior-tty <tty-val>” - e.g. set inferior-tty /dev/pts/0

https://github.com/NationalSecurityAgency/ghidra/issues/3174


Day 4 Binaries

Two binaries

1. Generic binary that should run on all OS’s
2. A bonus binary that will only work on Linux and MacOS

a. Try using WSL if you are running windows

Suggestions:
1. Set breakpoints at places where dynamic values are being used, e.g.

comparison operations


