12 Days of Ghidra

Nathan R

https://twitter.com/nathanstpr_
https://infosec.exchange/@nathanstpr

$whoami

Security Researcher

« Mobile devices

« Operating Systems

MSci Computer Science &§& PhD Student in InfoSec

Big fan of Hollow Knight and Star Wars

Day @ — Hello, Ghidra!

Agenda

What 1s Reverse Engineering?
What 1s Ghidra

Ghidra Setup

Ghidra walkthrough

Strings

What is Reverse Engineering (RE)?

Developer: source code -> binary format
Researcher: binary format -> source code

e
L —

L

mmg My file.O —l myfile.bin

Reverse Engineering

Why do we perform RE?

Understand what a binary 1s doing

Why?
« Malware Analysis
« Identify security 1ssues

e Better understand undocumented features
?

What 1s Ghidra?

Interactive software reverse engineering framework

Dissassembler

« Gilves us a ‘listing’ of assembly code

Decompiler

« Attempts to present assembly code as close to source as possible

Its an 1nvestigative tool, you need to point Ghidra in the right direction

:)

Ghidra Setup

Windows

Install a recent version of Java
Download Ghidra .zip from Github

Extract .zip to desktop (or any place you want)

Run ghidraRun.bat

https://github.com/NationalSecurityAgency/ghidra/releases

Linux

Install Java JDK
« sudo apt install openjdk-18-jdk

Download Ghidra from Github

Run ghidraRun.sh

MacOS

Install Brew

e /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)*

Install Java JDK

e brew install --cask temurin

Install Ghidra

e brew i1nstall --cask ghidra

ghidraRun

https://brew.sh/
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh

Ghidra on Apple Silicon

Need to rebuilld support binaries for armé6s4:

Install gradle

e brew install gradle

Open Ghidra support directory

e cd /opt/homebrew/Caskroom/ghidra/xx.x.x-xxxxxxxx/ghidra_xx.x.x_PUBLIC/support

Build support binaries for Arm
e ./buildNatives

Using ghidra

Starting Ghidra
Navigate to Ghidra install directory
e ../ghidra _<version>/

Windows:

e ghidraRun.bat

Linux and MacOS

e ghidraRun.sh

Program Manager

First window you will see 1n Ghidra : _
O Ghidra: NO ACTIVE PROJECT
Project Tools Help
2% %
. . o Tool Chest
HUb -For Openlng/creatlng prOJeCtS Active Project: NO ACTIVE PROJECT

771 NO ACTIVE PROJECT

e Importing new files

Selecting tools

Filter:

Table View

Running Tools: INACTIVE

Closed project: testing =

Program Manager — Creating a new Project

File -> New Project

Project Types:

e Non-shared for working alone
e Shared for working in group

Exercise 1:

e Create a new, non-shared project for 12 days of Ghidra

rue cdit rrojcci 10015 ncip

LR E RN

“Tool Chest

2 E Y

“Active Project: 12-days-of-ghidra

) 12-d ays-of-ghidra

Filter: Q

Tree View Table View

Opening a Project 1n Ghidra

Select the project in the program manager

Click on the dragon button at the top

Importing a binary 1nto Ghidra

Keybind -> I

e Or file -> import file

Select the correct compiler version

e Or make a best guess, tools like binwalk can be helpful

Select analysis you want to run

e Default will normally be enough

Ghidra Analysis

Aims to improve the quality of your decompilation

Finding functions

Finding cross-references (XRefs)
Identifying different sections of memory
Identifying stack variables

Evaluating control flow

Analysis passes can take a while

e Defaults will be enough for these sessions

RE First Steps

Strings are a great first step when REing a new binary

Why?

e Can use them to identify what function 1s doing

e Error messages can give you good content
e Important data can be i1ncluded 1n the binary, e.g. crypto keys

Ghidra has a built in Strings search tool

Day @ Binary

. Install Ghidra
. Create a new project
. Import day0.bin
. Find the main function for your systems binary
. Run the binary 1n a terminal to see what 1t does
. See 1f you can find the flag in the binary
a. It may not be in the main function ;)

OuTH WN -

Flags are in the form vrc_flag{}

e DM me on Discord @nathanr to claim a flag :)

Prizes

We also have a couple of prizes to give away:

e Choice of book from No Starch Press
e Hoodie from @InterruptlLabs

Categories:

1. For whoever completes all 12 binaries first
2. Most engaged participant

a. Helping on discord

b. Contributing to discussions
3. Best write-up

Day 1 - Crackme

Editing Function Signatures

Ghidra’'s analysis 1s a best guess

e Params and return values are often not the correct type

Ghidra allows you to edit the function signature
e Improves readability
e array index 1in decompilation

e Polinter types

RE challenge 1 -> adding correct function signatures

Ghidra Variable Types

Default variable names do not provide much context

e pVarl, pVar2, undefined8

Can be useful as you go along to rename variables to what you think they
might be used for (keybind -> L)

e Remember strings from yesterday? Use them to help you :)
For instance - password _maybe, sus_checking password

Can help you build a more complete picture as you go

Day 1 Crackme

You should RE the static check to produce the correct password string.

Suggestions:
1. Setup correct function signature for main
2. Modify variable names and types to help improve the decompilation

Hints:
« Consider how different data types impact the length of data read

Day 2 — XOR operator

Bitwlise Operators and Obfuscation

Developers can try and hide data values using obfuscation
« You have already seen this with yesterday's binary ;)

XOR 1s a very common operator in this context:
A"B=C

A = some text
B = key (needs to be same length as text)
C = XOR'D text

Day 2 Binary

Have a look at today’s binary and see if you can break the password
obfuscation scheme.

Suggestions:
- Write a (python) script to help you

« Make use of tools like CyberChef

Hints:

« XOR has an interesting property that allows you to reverse 1t when you
only have partial information

Day 3 — More Crypto

Cryptography Terminology

Plaintext -> ‘Normal’ text

Ciphertext -> Text passed through a cryptography algorithm
Encryption -> Convert Plaintext to ciphertext

Decryption -> Convert Ciphertext back 1nto Plaintext

Key -> Secret value that adds ‘randomness’

Types of Crypto Algorithms

Encryption/Decryption

e Reversible
e Useful for hiding data

Hashing

e One-way (Not reversible)
e Useful for verification of data, or to improve search efficiency

Day 3 Binary

Improves the cryptography of the binary from yesterday

e No more XOR

Suggestions:

1. See 1f you can identify what the encryption scheme 1is
2. Reverse the encrypt algorithm and write the decryption function 1in a
scripting language like Python

How might you find the encryption scheme?

e Variable names, any statically defined constants?

Day 4 - Debuggers

Static and Dynamic Analysis

Static Analysis

e Look at code without running it

Dynamic Analysis

e Run the binary and observe its behaviour

So far, we have focus on static analysis, Ghidra can also help us perform
dynamic analysis

Debuggers

Allow us to step through program execution line by line

e View variable values
e Register Values
e Contents 1n memory

Why might we need to do this?

e Information that i1s only generated at runtime

Ghidra Debugger Tool

Connects to a system debugger

e GDB -> Linux
e LLDB -> MacO0S
e WinDBG -> Windows

Set breakpoilnts

e Where you want to stop execution

View variable and memory contents in the GUI

Send 1nput to the program

Setting up Ghidra Debugger

Open the program manager and click on blue bug

Open a terminal window — here for why
 Run “tty” and take note of value e.g. /dev/pts/0
« “sleep 1000000"

Inside Ghidra create a new GDB Target
« “IN-VM GNU gdb local debugger”

In Ghidra GDB Interpreter:
« “set inferior-tty <tty-val>” - e.g. set inferior-tty /dev/pts/0

https://github.com/NationalSecurityAgency/ghidra/issues/3174

Day 4 Bilnaries

Two binaries

1. Generic binary that should run on all 0S's
2. A bonus binary that will only work on Linux and MacOS
a. Try using WSL if you are running windows

Suggestions:

1. Set breakpoints at places where dynamic values are beilng used, e.g.
comparison operations

Day 5 - Structs

Structs

You may have noticed an AES struct in the previous binary

Structs are how variables are group in C / C++

They form a composite data type

e A type composed of different variables

How to know 1f 1t 1s a struct or an array?

Arrays are made up of elements of the same types
« Therefore, offset calculations can be consistent
o mov r@, array_base + (idx * sizeof(type))

Structs are composed of many different types

« Therefore, offset calculations are going to be relative to each of the
fields 1n the struct
o mov r@, struct _base + 0x4 // char (1 byte)
o mov rl, struct_base + 0x8 // int (4 bytes)
o mov r@, struct _base + Ox1E

Ghidra Autostruct

Right-click on a variable and select ‘create autostruct’

Can edit the variable type to update fields i1n the struct

Day 5 Binary

Suggestions:

Use ghidra’'s autostruct feature to generate astruct types for a variable
malloc() can be a good way to check that the array slize 1s correct

Check how each of the struct fields are used in the program logic

Try and identify what file the application 1s expecting

Day 6 — Reversing C++
Objects

Intro to C++

Object-Oriented version of C
« C 1s a subset of C++

Introduces:
 Classes

« Similar in principle to C structs

« Difference 1s encapsulation - public, private, and protected keywords
* Methods

« Functions that are bound to a class/object

« I.e. the first parameter will always be ‘this’

Constructors

Called when you create a new C++ object
« Object obj = Object();

Defines how you create a new object of that class type

« Typically, you will see some resource initialization

new vs malloc()

In previous binaries you may have noticed calls to malloc()
« malloc() allocates some memory and returns a pointer to this

new serves a similar purpose to malloc()

e« In addition 1t also calls the class constructor

Object* obj = new obj();
obj->method();

Day 6 Binary

This 1s a more complicated binary than before
 Requires you to understand more about the program flow than before

There 1s no text prompts when you run the bin

* You need to RE what information to pass to main

Suggestions:

« Pay special attention to what happens inside of constructors

Day 7 — Ghidra Script

Introduction

Allows you to extend the functionality of ghidra
e E.g. -> VTgrepGhidra

Written in Python(2) or Java

e Python3 is available using third party extensions (not covered here)

API for interacting with core Ghidra components

e Program database -> var info, addr info

https://github.com/SentineLabs/VTgrepGHIDRA

Setup

Can be open within Ghidra 1itself

e Window -> script manager || Window -> python

Ghidra integrates with Eclipse for better IDE support

e Download Eclipse
e On Ubuntu can use snap -> snap install --classic eclipse
e On MacOS use brew -> brew install --cask eclipse-java eclipse-cpp

https://www.eclipse.org/downloads/

Python Example

fm = currentProgram.getFunctionManager()

funcs = fm.getFunctions(True) # True means 'forward'
for func in funcs:

print("Function: {} @ Ox{}".format(func.getName(),
func.getEntryPoint()))

Print the names of every function 1n the program

Day 7 Binary

You need to construct a key using GhidraScript

e Concatenate function names based on forward CFG

Suggestions:

e Demangle the function name to remove noise
e Open the binary 1n ghidra to find a good entry point function
e A recursive algorithm could be useful

Day 8 — Remote
Connections

Day 7 Binary

Some binaries will communicate with external web-severs to get some data

« Encryption key
 Heart-beat

Suggestions:
« URLs are commonly obfuscated — how might you recover 1t?
« Does the webserver have any other resources you can access?

Day 9 — Network
Programs

Day 9 Binary

Interact with the webserver to recover the key

Suggestions:
« Build on top of yesterday’'s script to develop some automated interaction

« Run the binary multiple times to see if anything changes

« See 1f any output from the previous run can be used to improve the next
one

Let me know if you have any 1ssues running this binary, it can be a little
temperamental from my testing depending on your setup.

Day 10 — Function ID

Stripped Binaries

So far all of our binaries have had symbols included
« Function Names

A lot of binaries you see in the wild will be stripped
« No functions names

In Ghidra, all of the functions will just be called FUN followed by random
values

This can make RE very time consuming, especially 1n static binaries
* What are the important functions?

Function ID

Ghidra has a feature to help with this called function ID
« Anyone familiar with IDA/Hex-Rays will know this as FLIRT

A database for function hashes

Ghidra compares the stripped function hash with a known function hash to
see 1f they match

* If they do, this will be marked 1n the disassembly view

How do I create a .fidb?

Identify what library the function 1s from

« Versions must match

Compile a static binary with symbols using the target library
Load the known binary into Ghidra

Tools->Function ID->Create empty new fidDB

Tools->Function ID->Populate fidDB from programs
« Make sure the language matches the compiler used on the binary

Using the fidDB

Import a binary that matches the language specified when populating your db
Under the analysis options “Function ID” should appear

If not, make sure the compiler and language are the same

Day 10

More of an exercise than a challenge today on account of the many steps involved
Take today’s binary and try and cover information using function 1id

I will consider this binary done when you can tell me:

1. What library i1s being used

2. What function 1s called for printing “hello world”

Suggestions:
Remember to look at string information

Google 1s your friend
I recommend doing this 1s a Linux VM

In order to statically compile a binary you need to use the --static flag
« This looks for .a files rather than .so files

Day 11 - Final
Challenge

Final Challenge

C++ Binary with multiple static checks to pass
« Both stripped and unstripped depending on how much of a challenge you want

Multiple approaches to this one:
« Reimplement in python and run yourself
« Use a mixture of dynamic and static analysis to bypass checks

Suggestions:
« Consider what 1s happening in constructors

« Create python scripts to automate your interactions

Day 12 — Wrap-up

What have we learned?

How to reverse engineer C/C++ binaries in Ghidra
Identifying and undoiling common data obfuscation mechanisms
Working with cryptography algorithms

Working with network protocols

Dynamic analysis using Ghidra's debugging tool and GDB
Using GhidraScript to automate parts of our static analysis

Creating an fidDB for helping us recover information about a stripped binary

Prizes

First to complete all the challenges
« Joseph B

Community Prize (for being engaged and helping others)
e Hubert (__H)

Want More?

Books (anything by ‘No Starch Press’):

 Hacking The Art of Exploitation — J Erickson

« Practice Reverse Engineering — Dang, Gazet, Bachaalany
« Practical Malware Analysis — Sikorski, Honig

Websites:
e Azeria Labs
e Malware Unicorn

Careers:

 Vulnerability/Security Researcher
« Security Consultant

« Threat Analysist

Keep involved with VR Campus on Discord :)

4 HOUR WEEKEND WORKSHOP (28TH OF JANUARY)

MASTERING ANDROID
APPLICATION

e Fundamentals of the programming language, Android apps, and OS.
e Android application development.
. Android applications and identify common

JAMESSTEVENSON.ME
TODO.COURSES

